L-cohomology of hyperkähler quotients

نویسنده

  • Nigel Hitchin
چکیده

Jost and Zuo’s theorem (adapting an earlier idea of Gromov [7]) states that if the Kähler form ω on a complete Kähler manifold satisfies ω = dβ, where β is a one-form of linear growth, then the only L harmonic forms lie in the middle dimension. An application of the same argument shows further that if G is a connected Lie group of isometries on a complete Riemannian manifold generated by Killing vector fields of linear growth, then G acts trivially on the space of L harmonic forms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Cohomology of Hyperkähler Quotients

This paper gives a partial desingularisation construction for hyperkähler quotients and a criterion for the surjectivity of an analogue of the Kirwan map to the cohomology of hyperkähler quotients. This criterion is applied to some linear actions on hyperkähler vector spaces.

متن کامل

Abelianization for hyperkähler quotients

We study an integration theory in circle equivariant cohomology in order to prove a theorem relating the cohomology ring of a hyperkähler quotient to the cohomology ring of the quotient by a maximal abelian subgroup, analogous to a theorem of Martin for symplectic quotients. We discuss applications of this theorem to quiver varieties, and compute as an example the ordinary and equivariant cohom...

متن کامل

Toric Hyperkähler Varieties

Extending work of Bielawski-Dancer [3] and Konno [12], we develop a theory of toric hyperkähler varieties, which involves toric geometry, matroid theory and convex polyhedra. The framework is a detailed study of semi-projective toric varieties, meaning GIT quotients of affine spaces by torus actions, and specifically, of Lawrence toric varieties, meaning GIT quotients of even-dimensional affine...

متن کامل

On the cohomology ring of compact hyperkähler manifolds

The Chow ring of a smooth algebraic variety V , denoted CH∗(V ), is an analogue of the cohomology ring that is more closely related to the algebraic, rather than topological, aspects of the variety. For a d-dimensional abelian variety A over a field k, let  = Pic(A) be its dual, the variety parameterising principal line bundles on A, and for a ∈  denote the line bundle parameterised by a as L...

متن کامل

Twistor Quotients of Hyperkähler Manifolds

We generalize the hyperkähler quotient construction to the situation where there is no group action preserving the hyperkähler structure but for each complex structure there is an action of a complex group preserving the corresponding complex symplectic structure. Many (known and new) hyperkähler manifolds arise as quotients in this setting. For example, all hyperkähler structures on semisimple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008